Mandatory courses

Module Code	Module Name	Module Type	Pre-requisites for Attendance	Duration/ Semester	Content of examination / Aim of module course	Coursework	Form of Examination	СР
M-LSI-P-001	Computer Science for Life Scientists	L, E	None	D: 1 Sem. S: 1. Sem.	Contents:Outline of practical computer science:Concept of imperative and object- oriented programmingTechniques for design and analysis of algorithmsExamples of classic algorithms and data structuresBasics of numeric algorithmsAims:Preparation and good understanding of module contents	Exercises: 12 assignment sheets are grouped into three sets of four sheets. Students have to achieve at least 50% of the points overall, and at least 35% for each set of four sheets. As will be clearly indicated, the first set has to be done individually, others can be handed in in groups of up to three. Each student has to be able to explain the solution to the tutors upon request to obtain the points.	Written Examination	9
M-LSI-P-002	Mathematics for Life Scientists	L, E	None	D: 1 Sem. S: 1. Sem.	Contents:Concepts and application of basicmathematical concepts, linear algebra,analysis, and probability theory/statisticsGoals:Familiarity with mathematicalformulations of concepts in the lifesciences.Proficiency in mathematical calculationsand manipulations for problem solving inthe life sciences.	Exercises, optional.	Written examination. 50% required for a passing grade.	3

Module	Module Name	Module	Pre-requisites for	Duration/	Content of examination / Aim of	Coursework	Form of	СР
Code		Туре	Attendance	Semester	module course		Examination	
M-LSI-P-003	Chemistry and	L, E	None	D: 1 Sem.	Content:	Optional exercises	Written Examination	7
	Biology for Life			S: 1. Sem.	Overall view of relevant topics in	Optional mock exam		
	Science Informatics				Chemistry and Biology for Life Science			
					Informatics			
					<u>Aim</u> :			
					General knowledge of the functioning of			
					the cell as the smallest integral part of			
					life, some specialized cells			

M-LSI-P-004	Biological Databases	V, Ü	None	D: 1 Sem.	Contents:	Exercises	Written Examination	6
				S: 1. Sem.	Introduction into molecular biology			
					Objects in Biology, Objects in Chemistry,			
					Objects in Medicine, Genomics,			
					Functional Genomics and Proteomics,			
					Pharmaceutical Research Processes, Data			
					Generation Technologies, Data Types			
					and Formats, Information systems			
					representing biomedical data			
					 From Object Orientation to Knowledge 			
					Representation, the Role of Ontologies			
					for Biomedical Knowledge			
					Representation			
					 Logic Inference, Biomedical Data 			
					Integration Technologies			
					Aims:			
					Knowledge			
					The module introduces students to			
					modern concepts for the representation			
					of biological, chemical and			
					pharmacological data and knowledge in			
					information systems			
				Skills				
				Foundations of meaningful and effective				
					use of biological, chemical and			
					pharmacological data, databases and			
					information systems.			
					Competences:			
					Biomedical knowledge management has			
					a key role in pharmaceutical industry and			
					biotechnology. With our module we lay			
					the foundation for the ability to			
					•Understand what biologists, chemists			
					and medical researchers need from a			
					specialist in life science informatics			

Module Code	Module Name	Module Type	Pre-requisites for Attendance	Duration/ Semester	Content of examination / Aim of module course	Coursework	Form of Examination	СР
M-LSI-P-005	Bioinformatics I	V	None	D: 1 Sem. S: 1. Sem.	Communicate, as a life science informatics specialist, with biologists, chemists and medical researchers •Translate scientific questions from the empirical, experimental sciences into IT- based, model-driven approaches Work in a data-driven, pharmaceutical research environment <u>Contents</u> : Principles of computer scientific methods of Life Sciences, especially molecular biology (genomics, proteomics, expression profiling, network analysis) Computational mapping (Begriff richtig?) of natural phenomenons, especially probalistic shapes (?) <u>Aim</u> : Interdisciplinary thinking Understanding of algorithmic approaches of trade-offs	Optional exercises	Written Examination, 50 % of points have to be achieved in order to pass.	3

Module Code	Module Name	Module Type	Pre-requisites for Attendance	Duration/ Semester	Content of examination / Aim of module course	Coursework	Form of Examination	СР
M-LSI-P-006	Molecular Modeling and Drug Design	L, E	Computer Science for Life Scientists, Mathematics for Life Science Informatics, Chemistry and Biology for Life Science Informatics	D: 1 Sem. S: 2. Sem.	ContentsPrinciples of protein structureProtein structure predictionPrinciples of protein-ligand interactionsThermodynamic foundations of ligandbindingEnergy functions and computationalforce fieldsMolecular mechanicsModeling of bioactive ligandconformationsPharmacophore conceptMolecular docking algorithmsAimsDeveloping an understanding of scientificand algorithmic foundations of molecularmodeling and drug design.	The lecture is accompanied by integrated exercises. For admission to the MMDD exam, achieving 50% of the points granted for the exercise program in a final test that can be repeated once will be required.	Written Examination	6
M-LSI-P-007	Bioinformatics II – Visual Computing in the Life Sciences	L, E	keine	D: 1 Sem. S: 2. Sem	<u>Content</u> : Overall view off specific methods of data visualisation and image processing <u>Aim</u> : Application of those methods in biology and Life Sciences	Exercises: Students have to achieve at least 50% of the points from the exercises, which can be submitted in groups of up to three students. Each student has to be able to explain the solution to the tutors upon request to obtain the points.	Written Examination	6

Module Code	Module Name	Module Type	Pre-requisites for Attendance	Duration/ Semester	Content of examination / Aim of module course	Coursework	Form of Examination	СР
M-LSI-P-008	Programming Lab I	LC	Computer Science for Life Scientists	D: 1 Sem. S: 2. Sem.	Contents:Practical programming in Python.Implementation of algorithms focusingon bioinformatic problems.Problem solving in Python usingalgorithmic approaches.Goals:Proficiency in general Pythonprogramming.Competence in the application of Pythonfor solving bioinformatic andchemoinformatic problems ranging fromdata handling to algorithmicimplementations.Programming skills for the automation ofworkflows.Ability to solve of computational andalgorithmic challenges in interdisciplinaryresearch and applications.		(Bi-)Weekly programming exercises followed by individual code discussions. Point-based system, 50% required for a passing grade.	8
M-LSI-P-010	Scientific Presentation I	S	None	D: 1 Sem. S: 2. Sem.	Topics:Overview of he the forms of scientificpresentation: slide design, stricture ofscientific presentation using selectedexamples from literature, presentationtrainingGoals:Improvement of presentation skills, thatare important to exchange scientificideas and concepts.		Presentation	4

Module Code	Module Name	Module Type	Pre-requisites for Attendance	Duration/ Semester	Content of examination / Aim of module course	Coursework	Form of Examination	СР
M-LSI-P-011	Chemoinformatics	L, E	Molecular Modeling and Drug Design	D: 1 Sem. S: 3. Sem.	ContentsComputational molecularrepresentationsMolecular descriptorsMolecular similarity (graph- ordescriptor-based)Chemical space representationsSimilarity searchingCompound classification / clusteringmethodsMachine learning algorithmsSimilarity-property principleStructure-activity relationshipsActivity landscapesMolecular networksAimsComprehending and applying standardmethods in chemoinformatics andunderstanding their algorithmicfoundations.	The lecture is accompanied by integrated exercises.	Written Examination	7

Module Code	Module Name	Module Type	Pre-requisites for Attendance	Duration/ Semester	Content of examination / Aim of module course	Coursework	Form of Examination	СР
M-LSI-P-012	Programming Lab II	LC	Programming Lab I	D: 1 Sem. S: 3. Sem.	Content:- Short introduction to Java- Basic Data Processing with Java- Network Analyses with Java- Image Processing with Java- Image Processing with Java- Sequence Analyses with Java- Text & Data Mining with Java- Text & Data Mining with Java- Structural Biology with Java- Structural Biology with JavaAim:In this course students will learn how to develop software, test it purposefully and release it into the wild. A main challenge which every software developer is faced, is to write readable, maintainable, testable and distributable software.One of the goals of this course is to introduce patterns (sometimes also 'anti- patterns') that will show ways how to develop software with a minimum amount of time and resources. This can be done using existing libraries, frameworks and build systems.In detail this means, after this semester students should know, how to (a) solve problems in life science with a new Java program, (b) run and test Java applications in a Linux or Unix environment, (c) use external libraries and packages to save work and (d) 		Presentation	8

Module Code	Module Name	Module Type	Pre-requisites for Attendance	Duration/ Semester	Content of examination / Aim of module course	Coursework	Form of Examination	СР
M-LSI-P-014	Biomedical Data Science & Al	L, E		D: 1 Sem. S: 3. Sem.	Topics: - Statistical Foundations of Data Mining - Clustering - Foundations of supervised learning - Classical ML algorithms - Deep Learning Qualification goals: - - Students learn and understand foundational methods of data mining and machine learning - Students are able to apply them to basic problems - Students understand the limitations of the methods taught	Exercises, more than 50% must be reached in order to be admitted to the exam	Written Examination	6
M-LSI-P-013	Master's Thesis		A minimum of 60 CP in mandatory courses, successful attendance of module 1 to 9	D: 1 Sem S: 4. Sem.	Content: The candidate is conducting independent work on a problem taken from the Life Science Informatics field and is producing findings within a specified period of time under application of scientific state-of-the-art methods. Aim: Correct usage of state-of-the-art methods to solve a scientific problem taken from the Life Science Informatics field		Master's Thesis	30